import numpy as np
import matplotlib.pyplot as plt
# Create figure and axis
=(10, 6))
plt.figure(figsize
# Define the points for the hype cycle curve
= np.array([0, 1, 2, 4, 6, 8, 10])
x = np.array([0.1, 3, 4.5, 1, 3, 3.5, 3.5])
y
# Create smooth curve through points
= np.linspace(0, 10, 100)
x_smooth = np.interp(x_smooth, x, y)
y_smooth
# Plot the curve
=3, color='blue')
plt.plot(x_smooth, y_smooth, linewidth
# Add labels for each phase
= [
labels 1, 2.5, "Technology\nTrigger"),
(2, 4.8, "Peak of Inflated\nExpectations"),
(4, 0.5, "Trough of\nDisillusionment"),
(6, 2.5, "Slope of\nEnlightenment"),
(9, 3.8, "Plateau of\nProductivity")
(
]
for x, y, label in labels:
=12, ha='center')
plt.annotate(label, (x, y), fontsize
# Add title and labels
"The Gartner Hype Cycle for MGA Adoption", fontsize=16)
plt.title("Time →", fontsize=12)
plt.xlabel("Expectations / Visibility", fontsize=12)
plt.ylabel(
# Remove ticks for cleaner look
plt.xticks([])
plt.yticks([])
# Add grid
True, linestyle='--', alpha=0.3)
plt.grid(
# Save the figure
## plt.savefig('mga_hype_cycle.png', dpi=300, bbox_inches='tight')
# Display the plot
plt.show()
Generative AI
journal
AI advances science
I was preparing a presentation to share my GenAI experiences with my team and found out this Gartner Hype Cycle concept, describing my adoption process of GenAI quite precisely.