Generative AI

journal
AI advances science
Author

Zhenglei Gao

Published

May 16, 2025

I was preparing a presentation to share my GenAI experiences with my team and found out this Gartner Hype Cycle concept, describing my adoption process of GenAI quite precisely.

import numpy as np
import matplotlib.pyplot as plt

# Create figure and axis
plt.figure(figsize=(10, 6))

# Define the points for the hype cycle curve
x = np.array([0, 1, 2, 4, 6, 8, 10])
y = np.array([0.1, 3, 4.5, 1, 3, 3.5, 3.5])

# Create smooth curve through points
x_smooth = np.linspace(0, 10, 100)
y_smooth = np.interp(x_smooth, x, y)

# Plot the curve
plt.plot(x_smooth, y_smooth, linewidth=3, color='blue')

# Add labels for each phase
labels = [
    (1, 2.5, "Technology\nTrigger"),
    (2, 4.8, "Peak of Inflated\nExpectations"),
    (4, 0.5, "Trough of\nDisillusionment"),
    (6, 2.5, "Slope of\nEnlightenment"),
    (9, 3.8, "Plateau of\nProductivity")
]

for x, y, label in labels:
    plt.annotate(label, (x, y), fontsize=12, ha='center')

# Add title and labels
plt.title("The Gartner Hype Cycle for MGA Adoption", fontsize=16)
plt.xlabel("Time →", fontsize=12)
plt.ylabel("Expectations / Visibility", fontsize=12)

# Remove ticks for cleaner look
plt.xticks([])
plt.yticks([])

# Add grid
plt.grid(True, linestyle='--', alpha=0.3)

# Save the figure
## plt.savefig('mga_hype_cycle.png', dpi=300, bbox_inches='tight')

# Display the plot
plt.show()